Application of the STIRPAT Model in unravelling Carbon Dioxide (CO2) emission patterns in the India and Global scales

Authors

  • K. Nirmal Ravi Kumar Department of Agric. Economics, Agricultural College, Bapatla, Acharya NG Ranga Agricultural University (ANGRAU), Government of Andhra Pradesh, India
  • M. S. Madhav ICAR-Central Tobacco Research Institute, Rajahmahendravaram - 533 105. Andhra Pradesh
  • N. T. Krishna Kishore Institute of Agri-Business Management, S.V. Agricultural College, Tirupati, ANGRAU, Government of Andhra Pradesh, India
  • K. Vijay Krishna Kumar Department of Plant Pathology, Agricultural College, Rajahmahendravaram, ANGRAU, India
  • Adinan B. Shafiwu Department of Agricultural and Food Economics, University for Development Studies, Ghana
  • Ishaque Mahama Corresponding Author, Department of Applied Statistics, Simon Diedong Dombo University of Business and Integrated Development Studies, Wa, Ghana

DOI:

https://doi.org/10.36005/jplm.v3i1.89

Keywords:

Kaya’s equation, STIRPAT, Carbon dioxide emissions, Ridge Regression, Population

Abstract

This study explores the significance of Kaya’s Identity in understanding and addressing CO2-emissions (CO2-emi) in both India and globally, utilising FAOSTAT data from 1991 to 2021. Kaya's Identity breaks down CO2-emi into population, GDP per capita (GDP-PC), emissions intensity (EI), and CO2-Emissions Intensity (CO2-EI). The STIRPAT model was used to analyse these factors, with Ridge regression applied to address multicollinearity. The findings highlight that population growth is a major driver of emissions, with increases of 4.14% in India and 21.36% globally. India's GDP-PC growth of 7.69%, compared to 3.67% globally, also significantly contributes to emissions. Despite improvements in energy efficiency and transitions to renewable energy, CO2-emi rose by 6.46% in India and 2.29% globally. The study identifies positive associations between population growth and GDP-PC with CO2-emi, while EI and CO2-EI show negative associations. Forecasts suggest that in India, sustained GDP-PC growth initially curbed CO2-emi, but post-2080, rising population and energy demands accelerated emissions. Globally, consistent GDP-PC growth initially slowed emissions, but after 2000, population growth and increased energy consumption led to a significant surge, driven by slower economic expansion and higher fossil fuel use. The results also indicate a long-term cointegration relationship between CO2-emi and the selected variables at both the all-India and global levels. The significantly negative coefficient for CO2-emi lagged by one period (CO2emi(-1)) suggests a strong long-run adjustment mechanism both at the all-India and global levels. This study underscores the need for integrated strategies addressing population growth, GDP-PC, energy efficiency, and clean energy adoption to combat climate change sustainably. Policymakers should focus on emerging technologies such as carbon capture, understanding consumer behaviour's impact on emissions, analysing regional disparities, and developing long-term emissions scenarios. JEL classification: Q54, Q56, Q58.

Downloads

Download data is not yet available.

References

Adewale F. L., Matthew O. O., Joshua O. O., & Clement A. O., (2019). The Impacts of Population Change and Economic Growth on Carbon Emissions in Nigeria, Iranian Economic Review, 23(3), 715-731

Ahmad M., Ali A. B., & Rahmatullah M. (2020). Impact of Population and Economic Growth on CO2 Emissions (Case of Afghanistan), Journal of Emerging Technologies and Innovative Research, 7(10), 368-378

Andreas O. (2013). Long-Term Kaya-Identity Analysis and Prerequisites of a Sustainable and Green Economic Growth in a 2°C World, ISPSW Strategy Series: Focus on Defense and International Security, (236). https://www.files.ethz.ch/isn/167156/236_Oberheiman

Anqing, S. (2001). Population Growth and Global Carbon Dioxide Emissions, Paper presented at IUSSP Conference in Brazil/session-s09, Development Research Group, The World Bank

Beşer M.K., & Beşer B. H. (2013). The relationship between energy consumption, CO2 Emissions and GDP per capita: A revisit of the evidence from Turkey, Alphanumeric Journal, 5(3), 353-368. http://dx.doi.org/10.17093/alphanumeric.353957

Bismark A., & Li Y.(2018). Analyzing the Impact of GDP on CO2 Emissions and Forecasting Africa’s Total CO2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory, Sustainability, 10,(9), 1-23, 3110. https://doi:10.3390/su10093110

Casey G., & Oded G. (2016). Population Growth and Carbon Emissions, National Bureau of Economic Research, Working Paper 22885, 1-15. https://doi 10.3386/w22885.

Chandrima S., &Kakali M., (2016). Impact of Population on Carbon Emission: Lessons from India, Asia-Pacific Development Journal, 23(1), 105-132. https://doi.10.18356/b4c7cba0-en

Chekouri S., & Benbouziane M., (2020). Examining the driving factors of CO2 Emissions using the STIRPAT model: the case of Algeria, International Journal of Sustainable Energy, 39(10), 927–940 .doi:https://doi.org/10.1080/14786451.2020.1770758.

Congjun R., Qifan H., Lin C., Mark G., & Zhuo H., (2023). Forecasting the carbon emissions in Hubei Province under the background of carbon neutrality: a novel STIRPAT extended model with ridge regression and scenario analysis, Environmental Science and Pollution Research, 30:57460–57480, https://doi.org/10.1007/s11356-023-26599-w.

Crippa M., Guizzardi D., Banja M., Solazzo E., Muntean M., Schaaf E., Pagani F., Monforti-Ferrario F., Olivier, J.G.J., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Grassi, G., Rossi, S., Oom, D., Branco, A., San-Miguel, J., & Vignati, E. (2022). CO2 Emissions of all world countries” – JRC/IEA/PBL 2022 Report, Publications Office of the European Union, Luxembourg, doi:10.2760/07904, JRC130363

Cui, E., Ren, L., & Sun, H. (2017). Analysis on the Regional Difference and Impact Factors of CO2 Emissions in China, Environmental Progress Sustainable Energy, 36 (5), 1282–1289. doi:10.1002/ep.12590

Danish, R. U, & Salah-Ud-Din, K. (2020). Relationship between energy intensity and CO2 Emissions: Does economic policy matter?, Sustainable Development, 28(5), 1457-1464. https://doi.org/10.1002/sd.2098

Dawit, W. M., & Zerayehu, S. E., (2018). The Driving Forces of CO2 Emissions and its Responsiveness in Ethiopia: An Integrated Analysis Using Vector Error Correction Model, Journal of Sustainable Development in Africa, 20(3), ISSN: 1520-5509

Dietz, T., & Rosa, E. A., (1997). Effects of population and affluence on CO2 Emissions, Proc. Natl. Acad. Sci., USA 94: 175-179.

Dolf, G., Francisco, B., Deger S., Morgan, D. B., Nicholas, W., & Ricardo, G., (2019). The role of renewable energy in the global energy transformation, Energy Strategy Reviews, 24, 38-50, ISSN 2211-467X, https://doi.org/10.1016/j.esr.2019.01.006.

Dong, K., Dong, X., Dong, C., (2019). Determinants of the Global and Regional CO2 Emissions: What Causes what and where?, Applied Economics, 51 (46), 5031–5044. doi:10.1080/00036846.2019.1606410.

Du, L., Wei, C., & Cai S. (2012). Economic Development and Carbon Dioxide Emissions in China: Provincial Panel Data Analysis, China Economic Review, 23 (2), 371–384. doi:10.1016/j.chieco.2012.02.004

Ehrlich, P. R., & Holdren, J. P. (1971). Impact of Population Growth. Science, American Association for the Advancement of Science, 171 (3977): 1212-1217. Bibcode: 1971Sci...171.1212E. doi:10.1126/science.171.3977.1212. JSTOR 1731166. PMID 5545198.

Erum, R., & Shazia, R., (2022). Modeling the nexus between carbon emissions, urbanization, population growth, energy consumption, and economic development in Asia: Evidence from grey relational analysis, Energy Reports, 8, 5430-5442, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2022.03.179.

Feng, S.M., (2017). The Driving Factor Analysis of China’s CO2-Emissions Based on the STIRPAT Model, Open Journal of Social Sciences, 5, 49-58, https://doi.org/10.4236/jss.2017.55004

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., … & Zheng, B.,(2022). Global Carbon Budget, Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

Giambona, F., Jacono, V. L., & Scuderi, R., (2005). The IPAT model: An empirical evidence, Convegno Intermedio Della Società Italiana di Statistica (SIS), 125-128

González-Torres M., Pérez-Lombard L., Coronel, J.F. & Maestre, I.R., (2021). Revisiting Kaya Identity to define an Emissions Indicators Pyramid, Journal of Cleaner Production, 317, 128-328. https://doi.org/10.1016/j.jclepro.2021.128328

Hoerl, A. E. (1962). Application of Ridge Analysis to Regression Problems, Chemical Engineering Progress, 58, 54-59

Hoerl, A. E., & Kennard, R. W., (1970). Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 1970, 12(1), 55–67.

IPCC (2018), Global Warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, p14.

IPCC (2022). “Summary for Policymakers. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.001

Jayanarayanan K., Rony Peter, Ajay S., & Sarath R., (2022). The increasing atmospheric CO2 over India: Comparison to global trends, iScience, 25(8), 104863, ISSN 2589-0042. https://doi.org/10.1016/j.isci.2022.104863.

Jia, J., Deng, H., Duan, J., & Zhao, J., (2009). Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method—A case study in Henan Province, China, Ecological Economics, 68(11), 2818–2824. doi:https://doi.org/10.1016/j.ecolecon.2009.05.012

Kaya, Y., & Yokoburi, K., (1997). Environment, energy, and economy: strategies for sustainability. Tokyo: United Nations Univ. Press, ISBN 9280809113.

Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of India, Springer Singapore. https://doi.org/10.1007/978-981-15-4327-2.

Kusumawardani, D., & Dewi, A., (2020). The effect of income inequality on carbon dioxide emissions: A case study, Heliyon, 6(8). doi:https://doi.org/10.1016/j.heliyon.e04772

Lan, X., B. D. Hall, G. Dutton, J., Mühle, J. W. Elkins, & Vimont. I. J., (2022). Long-lived greenhouses gases [in State of the Climate in 2021, Chapter 2: Global Climate]. Bulletin of the American Meteorological Society, 103 (8), S81-S84. https://doi.org/10.1175/BAMS-D-22-0092.1.

Leena S., (1997). Energy and CO2-Emissions in India: increasing trends and alarming portents, Energy Policy, 25(11), 941-949, ISSN 0301-4215. https://doi.org/10.1016/S0301-4215(97)00090-6.

Li, R., & Jiang, R. (2019). Is carbon emission decline caused by economic decline? Empirical evidence from Russia. Energy & Environment, 30(4), 672–684. https://doi.org/10.1177/0958305X18802786

Li S., Siu Y. W., & Zhao G., (2021). Driving Factors of CO2-Emissions: Further Study Based on Machine Learning, Frontiers in Environmental Science, 9:721517. doi:10.3389/fenvs.2021.721517

Liddle, B., (2011). Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries. Demographic Research, 24, 749–770. doi:https://doi.org/10.4054/demres.2011.24.30

Lin, S., Wang, S., Marinova, D., Zhao, D., & Hong, J., (2017). Impacts of urbanization and real economic development on CO2 emissions in non-high income countries: Empirical research based on the extended STIRPAT model, Journal of Cleaner Production, 166, 952-966

Luqman, M., Rayner, P.J., & Gurney, K.R., (2023). On the impact of urbanisation on CO2 emissions. npj Urban Sustain, 3, 6. https://doi.org/10.1038/s42949-023-00084-2

Malhi, G.S., Kaur, M., & Kaushik, P., (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review, Sustainability, 13, 1318. https://doi.org/10.3390/su13031318

Martínez-Zarzoso I., Bengochea-Morancho A., & Morales-Lage, R., (2006). The Impact of Population on CO2 emissions: Evidence from European Countries, FEEM Working Paper 98, 06. https://ssrn.com/abstract=902703 or http://dx.doi.org/10.2139/ssrn.902703

McGee, J. A., & Greiner, P. T, (2018). Can Reducing Income Inequality Decouple Economic Growth from CO2 emissions? Socius: Sociological Research for a Dynamic World, 4, 1-11.

Melisa C., (2022). Determinants of CO2 Emission Intensity: Manufacturing Firm-Level Evidence in Indonesia, Journal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 4(3), 402 – 419. https://doi.org/10.36574/jpp.v6i3.296

Metz, B., Davidson O., Bosch P., Dave R., & Meyer L. (2007). Ipcc, 2007: Climate change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change.

Mirza, F. M., Sinha, A., K, Javeria R., Kalugina, O. A., Zafar M. W. (2022). Impact of Energy Efficiency on CO2 emissions: Empirical Evidence from Developing Countries, Gondwana Research, 106, 64-77.

Mohanty A., & Wadhawan S., (2021). Mapping India’s Climate Vulnerability—A District Level Assessment Council on Energy, Environment and Water, https://www.ceew.in/sites/default/files/ceew-study-on-climatechange-vulnerability-index-and-district-level-risk-assessment.pdf

Mohsin M., Abbas Q., Zhang J., Ikram M., & Iqbal, N., (2019). Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: A case of transport sector, Environmental Science and Pollution Research, 26 (32), 32824–32835. http://dx.doi.org/10.1007/s11356-019- 06372-8.

Nathaniel V. D., Rahmat N., & Farizal F., (2022). Review of Indonesia’s Residential and Demographic Carbon Emission Using STIRPAT Model, Proceedings of the 7th North American International Conference on Industrial Engineering and Operations Management, Orlando, Florida, USA, June 12-14,

Nikunj P., & Dhyani M., (2023). The asymmetry effect of industrialization, financial development and globalization on CO2-Emissions in India, International Journal of Thermo fluids, 20, 100397, ISSN 2666-2027. https://doi.org/10.1016/j.ijft.2023.100397.

Noorpoor, A., & Kudahi, S., (2015). CO2 emissions from Iran's power sector and analysis of the influencing factors using the stochastic impacts by regression on population, affluence and technology (STIRPAT) model, Carbon Management, 6(3), 101-116. doi:10.1080/17583004.2015.1090317

Parikh J., Ganesh-Kumar A., & Vinay S., (2009). CO2-Emissions structure of Indian economy, Energy, doi:10.1016/j.energy.2009.02.014

Rafał K., (2015). Economic growth and CO2 emissions: the ECM analysis, Journal of International Studies, 8(3), 91-98. DOI: 10.14254/2071-8330.2015/8-3/7

Rahiman R., Yenneti K., & Panda, A., (2019). Making Indian Cities Energy Smart, TERI-UNSW Policy Brief (New Delhi: The Energy and Resources Institute).

Ratanavaraha V., & Jomnonkwao, S., (2015). Trends in Thailand CO2-Emissions in the transportation sector and Policy Mitigation, Transport Policy, 41, 136-146.

Rehman S., Rehman E., Mumtaz A., & Jianglin Z., (2022). A multicriteria decision making approach in exploring the nexus between wind and solar energy generation, economic development, fossil fuel consumption, and CO2 emissions. Frontiers in Environmental Science, 9, 659. http://dx.doi.org/10.3389/fenvs.2021. 819384.

Sarvar G., Jeyhun I., Mikayilov, Shahriyar Mukhtarov & Sakit Yagubov (2023). Forecasting 2030 CO2 reduction targets for Russia as a major emitter using different estimation scenarios, Journal of Applied Economics, 26(1), 1-26. DOI: 10.1080/15140326.2022.2146861

Shah S.A.A., Shah S.Q.A., & Tahir M., (2022). Determinants of CO2 emissions: exploring the unexplored in low-income countries, Environmental Science and Pollution Research, 29, 48276–48284. https://doi.org/10.1007/s11356-022-19319-3

Shahbaz M., Chaudhary A., & Ozturk, I., (2017). Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model, Energy, 122, 83-93.

Sunila, S. S., (2011). Determinants of carbon dioxide emissions: Empirical evidence from 69 countries, Applied Energy, 88(1), 376-382. https://doi.org/10.1016/j.apenergy.2010.07.022

Usman M., & Hammar, N., (2021). Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries, Environmental Science and Pollution Research, 28, 15519–15536.

Vivid A. K., & Deni K., (2021). Decomposition of CO2 emissions in ASEAN Based on Kaya Identity, Indonesian Journal of Energy, 4 (2), 101 – 114

Wei L., Shu Z., & Hongzhi Z., (2017). Analysis on Influence Factors of CO2 Emission in Hebei, 2017 International Conference on Advanced Environmental Engineering (ICAEE2017) IOP Publishing IOP Conf. Series: Earth and Environmental Science, 111 (2018) 012025 doi:10.1088/1755-1315/111/1/012025

WRI, (2018). Emissions intensity in Navigating the numbers, Greenhouse gas data and international climate policy Part-1, Chapter 5. World Resources Institute.

Wu Y., Shen L., Zhang Y., Shuai C., Yan H., Lou Y., & Gui Y., (2019). A New Panel for Analyzing the Impact Factors on Carbon Emission: A Regional Perspective in China, Ecological Indicators, 97, 260–268. doi:10.1016/j.ecolind.2018.10.006

Xilong C., Meijiao Z., & Longxi L., (2015). Analysis of Carbon Dioxide Emissions of Buildings in Different Regions of China Based on STIRPAT Model, 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International Conference on Building Energy and Environment (COBEE), Science Direct, Procedia Engineering 2015, 121, 645 – 652, doi: 10.1016/j.proeng.2015.08.1057.

Xiong C., Chen S., & Xu L., (2020). Driving Factors Analysis of Agricultural Carbon Emissions Based on Extended STIRPAT Model of Jiangsu Province, China, Growth Change, 51 (3), 1401–1416. doi:10.1111/grow.12384.

Xiongfeng P., Kamal U., Bowei A., Xianyou P., & Umme S., (2019). Influential factors of carbon emissions intensity in OECD countries: Evidence from symbolic regression, Journal of Cleaner Production, 220, 1194-1201, ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2019.02.195.

Yang B., Usman M., & Jahanger A., (2021). Do industrialization, economic growth, and globalization processes influence the ecological footprint and healthcare expenditure? Fresh insights based on STIRPAT model for countries with the highest healthcare expenditures, Sustainable Production and Consumption, 28, 893–910.

York R., Rosa, E.A., & Dietz, T., (2003) STIRPAT, IPAT and ImPACT: Analytic Tools for Unpacking the Driving Forces of Environmental impacts, Ecological Economics, 46, 351-365.

Zhao H., Hu J., Hao F., & Zhang H. (2022). Determinants of Carbon Dioxide Emissions and Their Peaking Prospect: Evidence from China, Frontiers in Environmental Science, 10, 10:913835. doi: 10.3389/fenvs.2022.913835

Ziroat M., & Raufhon S., (2022). Renewable energy and CO2-Emissions intensity in the top carbon intense countries, Renewable Energy, 192, 507-512, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2022.04.137

Downloads

Published

2024-07-07

How to Cite

Kumar, K. N. R., Madhav, M. S., Kishore, N. T. K., Kumar, K. V. K., Shafiwu, A. B., & Mahama, I. (2024). Application of the STIRPAT Model in unravelling Carbon Dioxide (CO2) emission patterns in the India and Global scales. Journal of Planning and Land Management, 3(1), 27–46. https://doi.org/10.36005/jplm.v3i1.89

Issue

Section

Development Studies